Rückschlagventil

BOA-RVK

PN 6/10/16 DN 15-200

Baureihenheft

Inhaltsverzeichnis

Rückschlagarmaturen und Schmutzfänger	4
Rückschlagventile nach DIN/EN	4
BOA-RVK	
Hauptanwendungen	4
Medien	
Betriebsdaten	
Gehäusewerkstoffe	4
Konstruktiver Aufbau	
Produktvorteile	4
Weiterführende Dokumente	
Bestellangaben	5
Druck-Temperatur-Tabelle	5
Werkstoffe	5
Durchflusskennlinien	
Abmessungen und Gewichte	7
Finhauhinweise	7

Rückschlagarmaturen und Schmutzfänger

Rückschlagventile nach DIN/EN

BOA-RVK

Hauptanwendungen

- Warmwasserheizungen
- Klimaanlagen
- Chemische Industrie
- Verfahrenstechnik
- Wärmerückgewinnungsanlagen

Medien

- Warmwasser
- Heißwasser
- Andere Medien auf Anfrage

Betriebsdaten

Betriebseigenschaften

Kenngröße	Wert				
	PN 6 ¹⁾	PN 6/10/16 ²⁾			
Nenndruck	PN 6	PN 6/10/16			
Nennweite	DN 15 - 200	DN 15 - 200			
Max. zulässiger Druck [bar]	6	16			
Min. zulässige Temperatur [°C]	-10	-20			
Max. zulässige Temperatur	+100	+250			
[°C]					

Auslegung gemäß Druck-Temperatur-Tabelle (⇒ Seite 5)

Gehäusewerkstoffe

Übersicht verfügbare Werkstoffe DN 15-100

Werkstoff	Werkstoff- nummer	Temperaturgrenze	Nenndruck
CuZn40Pb2	2.0402	≤ 100 °C ³⁾	PN 6
CuZn40Pb2	2.0402	≤ 250 °C ⁴⁾	PN 6/10/16

Übersicht verfügbare Werkstoffe DN 125-200

Werkstoff	Werkstoff- nummer	Temperaturgrenze	Nenndruck
EN-GJL-250	5.1301	≤ 100 °C ⁵⁾	PN 6
EN-GJL-250	5.1301	≤ 250 °C ⁴⁾	PN 6/10/16

Konstruktiver Aufbau

Bauart

- Rückschlagventil in Einklemmausführung
- Abdichtung durch federbelastete Platte bzw. Kegel durch Führungsbolzen geführt
- Zentrierhilfe, Teil des Gehäuses
- Kurze Baulänge EN 558/49
- Außenanstrich: DN 15-100: Gehäuse aus Messing ohne Lackierung DN 125-200: Gehäuse aus Grauguss, Lackierung blau **RAL 5002**
- Die Armaturen erfüllen die Sicherheitsanforderungen des Anhangs I der europäischen Druckgeräterichtlinie 2014/68/ EU (DGR) für Fluide der Gruppe 2.

Produktvorteile

- Hohe Funktionssicherheit durch exakte Führung der Abdichtplatte mithilfe von drei Führungsbolzen (bis DN 100).
- Einfache Montage durch angegossene Zentrierhilfe.
- Wartungsarm durch korrosionsfestes Messinggehäuse (DN 15-100) und Feder aus Nirostahl (alle Nennweiten).
- Universal einsetzbar durch Befestigungsmöglichkeit zwischen Flansche nach DIN EN 1092-1 PN 6-16, DIN EN 1092-2 PN 6-16, ANSI B 16.1 25/125, BS 4504 PN 16 und beliebiger Einbaulage.
- Kostengünstig in Transport und Handling durch kurze Baulänge und geringes Gewicht.
- Minimaler Druckverlust durch strömungsgünstigen Durchgang.

¹⁾ Dichtungsart: Metall/Kunststoffplatte

²⁾ Dichtungsart: metallisch

³⁾ 100 °C bei Ausführung Platte/Kegel aus Kunststoff

⁴⁾ Dichtungsart: metallisch

⁵⁾ Dichtungsart: Metall/EN-GJL-250 mit O-Ring

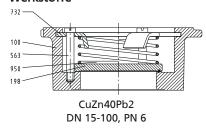
Weiterführende Dokumente

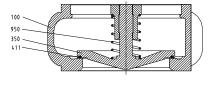
Hinweise/Dokumente

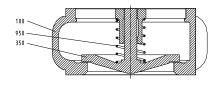
Dokument	Drucksachennummer
Baureihenheft BOA-R (Rückschlagventi-	7117.1
le für die Ausrüstung von Druckbehäl-	
tern nach TRD 108/TRD 110)	
Betriebsanleitung	0570.8

Bestellangaben

Bei allen Anfragen/Bestellungen nachfolgende Informationen angeben:


- 1. Typ
- 2. Nenndruck
- 3. Nennweite
- 4. Drucksachennummer


Druck-Temperatur-Tabelle


Prüfdruck und Betriebsdruck

PN	DN	Gehäuse-Druckprüfung	Sitz-Dichtheitsprüfung Zulässiger Betriebsdruck [bar] ⁶⁾⁷⁾							
		mit Wasser								
			Prüfung P12, Leckrate B nach DIN EN 12266-1	[°C]						
		[bar]	[bar]	-20 ⁸⁾	50	80	100	120	200	250
6	15-100	9	6,6	6	6	4	2	-	-	-
6	125-200	9	6,6	-	6	6	6	-	-	
6/10/16	15-100	24	17,6	16	16	16	16	16	14	13
6/10/16	125-200	24	17,6	-	16	16	16	16	12,8	11,2

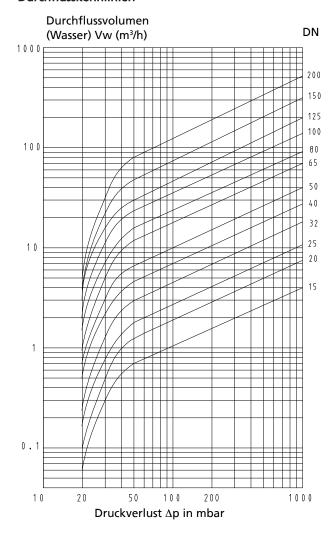
Werkstoffe

EN-GJL-250 DN 125-200, PN 6

EN-GJL-250 DN 125-200, PN 6/10/16

Stückliste DN 15-100 PN 6/10/16

Teile-Nr.	Benennung	PN	DN	Werkstoff	Bemerkung
100	Gehäuse	6/10/16	15-100	CuZn40Pb2	2.0402
		6/10/16	125-200	EN-GJL-250	5.1301
198	Platte	6	15-100	Kunststoff PPO-GFK	-
		6/10/16	15-100	Nirostahl	1.4301
350	Kegel	6	125-200	EN-GJL-250 mit O-Ring	5.1301
		6/10/16	125-200	EN-GJL-250	5.1301
411	Dichtring	6	125-200	EPDM	-
563	Führungsbolzen	-	15-100	A2	-
732	Halterung	-	15-100	Nirostahl	1.4301
950	Feder	-	15-200	Nirostahl	1.4571

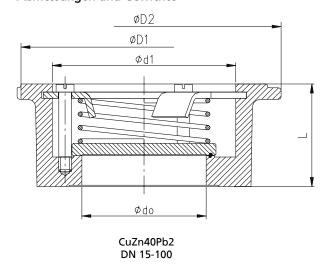

⁶⁾ Zwischentemperaturen können linear interpoliert werden

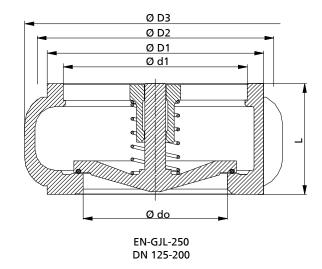
⁷⁾ Statische Beanspruchung

⁸⁾ EN-GJL-250 (5.1301) nur bis -10 °C

Durchflusskennlinien

Die Diagrammwerte gelten für Wasser bei 20 °C. Sie resultieren aus Messungen an Armaturen bei Einbau in horizontaler Leitung. Beim Einbau in vertikaler Leitung ergeben sich im Teilöffnungsbereich unbedeutende Abweichungen.


Um Druckverluste bei anderen Medien zu ermitteln, ist zuvor der äquivalente Wasservolumenstrom nach folgender Formel zu berechnen:


$$\dot{v}_{w} = \dot{v} \cdot \sqrt{\frac{\rho}{1000}}$$

Formelzeichen	Name
V _w	Aquivalenter Wasservolumenstrom [m³/h]
ρ	Dichte des Mediums (Betriebszustand) [kg/m³]
Ÿ	Volumenstrom des Mediums (Betriebszustand)
	[m³/h]

Abmessungen und Gewichte

Abmessungen [mm]/Gewichte [kg]

PN	DN	L	Ø D ₁ 9)	Ø D ₂ ¹⁰⁾	Ø D ₃	Ø do	Ø d₁	[kg]
6/10/16	15	16	43	51	-	15	28	0,2
	20	19	53	61	-	20	33	0,3
	25	22	64	71	-	25	41,5	0,3
	32	28	76	82	-	32	51,5	0,5
	40	31,5	86	92	-	40	58,5	0,7
	50	40	96	108	-	48,5	71,5	0,9
	65	46	116	127	-	63	90	1,2
	80	50	132	142	-	77	100	2
	100	60	152	162	-	96	126	2,8
	125	90	184	192	210	118	148	10
	150	106	209	218	250	138	176	13
	200	140	263	273	273	188	230	22

Anschlussmaße nach Norm

Baulängen: EN 558/49

Einbau möglich zwischen DIN EN 1092-1 PN 6-16 Flanschen: DIN EN 1092-2 PN 6-16

DIN EN 1092-2 PN 6-16 ANSI B 16.1 25/125 BS 4504 PN 6-16

DN	↔	↓	↑	↑ ohne Feder
40	20	15,5	24,5	4,5
50	20	15	25	5
65	20	14,5	25,5	5,5
80	20	13,5	26,5	6,5
100	20	13,5	26,5	6,5
125	20	-	32	12
150	20	-	34	14
200	20	-	35	15

Einbauhinweise

Strömungsrichtung und Durchflusspfeil beachten.

Jum Öffnen ist ein Mindestdruck erforderlich. Wird dieser nicht erreicht, so kann die eingebaute Schließfeder entfernt werden. Ohne Schließfeder Einbau nur in senkrechter Leitung mit Durchfluss nach oben.

Öffnungsdrücke (p_{θ}) in Abhängigkeit der Durchflussrichtung [mbar]

DN	+	1	1	↑ ohne Feder
15	20	16	24	4
20	20	16	24	4
25	20	16	24	4
32	20	16	24	4

⁹⁾ Zentrierdurchmesser für PN 6

¹⁰⁾ Zentrierdurchmesser für PN 16

Johann-Klein-Straße 9 • 67227 Frankenthal (Deutschland) Tel. +49 6233 86-0 • Fax +49 6233 86-34 76 E-Mail: valves@ksb.com • www.ksb.de